快速傅里叶变换(FFT)

Jul 22, 2024    m. Jul 22, 2024    #fft  

快速傅里叶变换(英语:Fast Fourier Transform, FFT),是快速计算序列的离散傅里叶变换 (DFT)或其逆变换的方法。傅里叶分析将信号从原始域(通常是时间或空间)转换到频域的表示或者逆过来转换。FFT会通过把DFT矩阵分解为稀疏(大多为零)因子之积来快速计算此类变换。 因此,它能够将计算DFT的复杂度从只用DFT定义计算需要的O(n^2) 降低到O(nlogn) ,其中n为数据大小。

快速傅里叶变换广泛的应用于工程、科学和数学领域。这里的基本思想在1965年才得到普及,但早在1805年就已推导出来。1994年美国数学家吉尔伯特·斯特朗把FFT描述为“我们一生中最重要的数值算法”,它还被IEEE科学与工程计算期刊列入20世纪十大算法。

用FFT计算DFT会得到与直接用DFT定义计算相同的结果;最重要的区别是FFT更快。(由于舍入误差的存在,许多FFT算法还会比直接运用定义求值精确很多)